Что такое плавный пуск электродвигателя?

Электродвигатель
-2
15/07/2018 14:08:56
Содержание:

В промышленности главным образом используется три разновидности электродвигателей:

  • асинхронные,
  • коллекторные;
  • синхронные.

Любой из перечисленных движков является частью электропривода, который предназначен для его связи с полезной нагрузкой. В зависимости от того, какая это нагрузка, электродвигатель отключается и затем снова запускается. Далее более подробно расскажем о том, что происходит при пуске электродвигателя и как оптимизировать этот процесс.

Что происходит при пуске асинхронного двигателя

Для понимания того, какое устройство применить для плавного пуска электродвигателя, надо знать принцип его работы. Самые распространенные двигатели – асинхронные с короткозамкнутым ротором. Их простая конструкция и соответствующая надежность и обусловили популярность этих электрических машин. Хотя ротор вращается, и его форма оптимизирована под этот процесс, он –  не что иное, как вторичная обмотка трансформатора.

А, как известно, если в первичной обмотке течет ток, то в ее сердечнике появляется электромагнитное поле. Перечисленные функции в асинхронном движке выполняет статор. Его магнитное поле, которое, в отличие от трансформатора, вращается вокруг ротора, индуцирует в нем токи, связанные с этим вращением. И чем больше разница скоростей поля и ротора, тем больше ток в последнем. Ведь ротор – это обмотка, замкнутая накоротко. А раз существует трансформаторная связь, значит, токи в обмотках зависимы прямо пропорционально.

Теперь перечислим условия, которые существуют при пуске асинхронного двигателя, питающегося от промышленной сети. Сначала рассмотрим трехфазный вариант:

  • неизменное напряжение;
  • неизменная частота;
  • ротор в состоянии покоя.

Присоединение асинхронного движка к электросети мгновенно создает вращающееся магнитное поле. При этом разница скоростей его и ротора (так называемое скольжение, выражаемое в процентах от скорости вращения электромагнитного поля статора) получается максимальной. И, как следствие этого, – как бы режим короткого замыкания трансформатора. Если мощность движка велика, пусковые токи получаются на уровне тех, что для трансформаторов аналогичной электрической мощности считаются аварийными.

Схема прямого подключения к сети асинхронного двигателя и зависимость силы тока статора от скорости вращения ротора
Схема прямого подключения к сети асинхронного двигателя и зависимость силы тока статора от скорости вращения ротора

Какое устройство применить для их ограничения, вполне понятно. Оно должно:

  • либо уменьшить величину напряжения на обмотках статора на время разгона ротора;
  • либо раскрутить ротор до присоединения статора к электросети.
  • Также можно внести конструктивные изменения в асинхронный двигатель.

Переключение схемы обмоток

Привести в движение ротор можно лишь в определенных электроприводах. По этой причине такой способ не является типичным. Остаются два, первый из которых наиболее широко используется. Но получить падение напряжения без потерь не так просто. В трехфазной цепи это можно сделать переключением с треугольника на звезду и обратно. Линейное напряжение, приложенное к обмоткам статора движка, обеспечивает в рабочем режиме его более высокую эффективность. Но и пусковой ток в схеме треугольника получается больше.

Поэтому переключение на схему звезда позволяет заметно снизить пусковой ток асинхронного двигателя. Это самый простой способ относительно плавного пуска. В нем применено минимальное число дополнительных элементов, поскольку падение напряжения создается возможностями самой трехфазной электросети. Этими элементами являются коммутаторы, а сама схема показана далее. Но такая простая схема применима лишь в трехфазной сети. В однофазном варианте нет действующего напряжения более низкого, чем фазное.

Пуск по схеме звезда с последующим переключением в треугольник
Пуск по схеме звезда с последующим переключением в треугольник

Использование резисторов

Чтобы получить максимально плавный разгон движка, необходимо использовать элементы, которые обеспечивают соответствующее падение напряжения. С этой целью применяются:

  • резисторы;
  • дроссели (реакторы);
  • автотрансформаторы;
  • магнитные усилители.

Эти способы годятся как для трехфазной, так и для однофазной сети. В любом случае придется задействовать коммутаторы, поскольку в определенный момент потребуется присоединить движок к сети напрямую. Схема с резисторами получается наиболее компактной. Однако по мере увеличения мощности движка соответственно увеличивается и мощность пусковых резисторов. Учитывая обстоятельство их нагревания, время пуска должно быть в пределах их допустимого температурного диапазона. Иначе от перегрева резисторы придут в негодность. Схема плавного пуска на резисторах показана далее.

Схема для одной группы пусковых резисторов
Схема для одной группы пусковых резисторов

Использование индуктивностей

Если клонировать схему, можно получить плавный пуск, используя несколько групп резисторов, соединенных параллельно, что облегчит их температурную нагрузку. Но увеличение времени плавного пуска будет сопровождаться увеличением потерь энергии в этих резисторах. По этой причине вместо резисторов применяются индуктивные элементы. В простейшем случае это дроссели. Это более громоздкое и дорогостоящее решение, но ради снижения потерь энергии из-за частых повторных пусков движков приходится его применять. Внешний вид реактора для мощного асинхронного движка представлен ниже.

Пусковой реактор мощного асинхронного двигателя
Пусковой реактор мощного асинхронного двигателя

Если индуктивность, используемую при запуске, выполнить в виде автотрансформатора с подвижным контактом, перемещающимся по виткам обмотки, можно либо оптимально отлаживать процесс пуска, либо управлять им, перемещая подвижный контакт. Недостатком этого варианта будет неизбежное искрение в механическом контакте. По этой причине он применим лишь при сравнительно малых мощностях движков. Схемы устройств плавного пуска с реакторами и автотрансформаторами показаны далее.

Схема плавного пуска
Схема плавного пуска

Схемы плавного пуска:

а) с реакторами;

б) с автотрансформаторами.

1, 2 и 3 – коммутаторы, управляющие переключением

Для плавного пуска без недостатков, присущих автотрансформаторам с их подвижным контактом, используются магнитные усилители. В них применено подмагничивание, которое позволяет изменять величину индуктивного сопротивления. Конструкция магнитных усилителей довольно-таки разнообразна. Но их главное преимущество – это малый ток и, соответственно, мощность, используемая для управления. В них нет регулировочных контактов, по которым текут большие токи. Одна из схем показана далее.

Схема усилителя
Схема усилителя

Двигатель с фазным ротором

Все рассмотренные устройства плавного пуска асинхронного электродвигателя задействованы на стороне его статора. Но когда постоянные повторные включения являются для движка нормальным рабочим процессом, его конструкцию изменяют, делая ротор фазным. Такое конструктивное решение дает возможность более эффективно регулировать токи, возникающие при разгоне двигателя. Конструкция и рекомендации по эксплуатации устройства плавного пуска движка с фазным ротором показаны ниже:

Пуск при помощи реостата
Пуск при помощи реостата

Применение полупроводниковых ключей

Все перечисленные устройства плавного пуска применяются уже много лет. У них имеется важное свойство, которое ставит их как бы вне конкуренции. У этих устройств нет электрических параметров, превышение которых приводит к исчезновению сопротивления (пробою). Следовательно, они наиболее надежны, хотя и морально устарели. Современные устройства плавного пуска используют управляемые полупроводниковые ключи (тиристоры и транзисторы). Это так называемое широтно-импульсное регулирование.

Ключ отсекает часть синусоидального напряжения по времени. В результате среднее значение напряжения можно изменить от нуля и до действующего 220 В. Следовательно, полупроводниковый ключ обеспечивает наиболее эффективный вариант для создания устройства плавного пуска электродвигателя. Но при этом ключ подвержен как тепловому пробою, так и аналогичному воздействию из-за превышения амплитуд напряжения и тока. Поэтому ключ должен эффективно охлаждаться и выбираться соответственно условиям эксплуатации движка.

Регулирование напряжения ключом
Регулирование напряжения ключом

Устройства с широтно-импульсным регулированием применимы в любой сети, независимо от числа фаз. Одна из таких схем показана ниже. Контакты после разгона ротора замыкаются и предохраняют ключи от повреждения скачками тока и напряжения.

Плавный пуск коллекторных электродвигателей

Несмотря на принципиальные отличия конструкции в сравнении с асинхронными, пуск коллекторных движков также сопровождается большим током якоря, который является ротором. По сути, это сборка из дросселей с последовательной коммутацией каждого из них. Чем дольше экспозиция напряжения на ламелях коллектора, что и получается сразу после включения и подачи напряжения, тем сильнее намагничивание сердечника и больше величина, которой ток успевает достичь.

При исполнении статора в виде постоянного магнита источник питания необходим лишь якорю. Но в таком случае его напряжение может быть только постоянным. Устройство плавного пуска, питаемое этим источником, делается только на элементах, способных создать падение постоянного напряжения.

Этими элементами являются:

  • резисторы,
  • транзисторы,
  • запираемые тиристоры.

Если статор выполнен как электромагнит, значит, возможна работа движка на переменном напряжении. При упомянутом для коллекторных движков подходят те же проверенные временем устройства плавного пуска, которые применимы для однофазных асинхронных двигателей:

  • резисторы (реостаты);
  • дроссели (реакторы);
  • автотрансформаторы;
  • магнитные усилители.

А также современные технические решения, основанные на полупроводниковых ключах. Их изображения аналогичны уже показанным выше.

При наличии электромагнитного возбуждения обмотка может соединяться с якорем либо последовательно, либо параллельно. Последовательное соединение безопасно, поскольку в электрической цепи течет общий электрический ток. Ее разрыв или присоединение к источнику питания вызывает одновременное изменение тока в обмотках движка. Но при параллельном соединении возможны варианты развития событий.

Если при подаче напряжения на движок обмотка возбуждения окажется обесточенной, а якорь запитан, появятся условия для явления, именуемого разносом двигателя. При этом ротор, стремясь притянуться к железу статора, поворачивается и разгоняется все быстрее и быстрее. Если к валу не приложен нагрузочный момент, по величине больший, чем создаваемый ротором, разгон может продолжаться до разрушения ротора. Для защиты от разноса необходимо, чтобы:

  • двигатель оставался хотя бы частично нагруженным;
  • имел специальные конструктивные элементы;
  • устройство плавного пуска гарантированно предотвращало этот процесс.

Плавный пуск синхронного двигателя

Синхронные движки, работающие от электросети с любым числом фаз, разгоняются как асинхронные, с использованием скольжения. Затем, превращая ротор в магнит, независимый от статора, происходит выравнивание скоростей вращения поля статора и ротора. По этой причине устройства плавного пуска, применяемые для синхронных двигателей, те же самые, что и для асинхронных. Некоторые отличительные детали, зависящие от питания ротора, можно видеть далее на изображении:

Схема
Схема

Выводы

В общем устройства плавного пуска всех типов электрических движков аналогичны и основаны на одних и тех же схемах и элементах. Выбор надо делать для конкретных условий, исходя в первую очередь из мощности двигателя. Но современные полупроводниковые ключи позволяют обеспечить в широком диапазоне мощностей наилучшие параметры плавного пуска. Поэтому имеет смысл остановить выбор в первую очередь на них.

Изображение пользователя Сергей Степанов
Сергей Степанов Инженер-электрик
комментарии:
Чтобы оставить отзыв, пожалуйста, авторизируйтесь используя социальные сети.
добавить комментарий:
Нажимая кнопку Отправить вы соглашаетесь с Пользовательским соглашением и Правилами размещения информации.
Мнение редакции может не совпадать с мнением автора отзыва.
Сколько денег вы тратите на ремонтные работы в год?
от 10 000 до 100 000 рублей
60% (6 ответов)
от 1 000 до 10 000 рублей
40% (4 ответа)
до 1 000 рублей
0% (0 ответов)
Всего проголосовало: 10